Introduction
SciChart Engine is a high-performance WebGL-based charting library designed for scientific data visualization.
Why SciChart Engine?
- Performance: Render 10M+ data points at 60 FPS
- Precision: Native Float32/Float64 array support
- Flexibility: Works with vanilla JS, React, and other frameworks
- Analysis: Built-in tools for peak detection, cycle detection, and more
Key Features
WebGL Rendering
Unlike canvas-based libraries, SciChart Engine uses WebGL for hardware-accelerated rendering. This enables:
- Smooth zooming and panning without re-rendering data
- Efficient handling of millions of points
- Consistent 60 FPS performance
TypedArray Support
Data is stored in Float32Array or Float64Array for:
- Memory efficiency
- Direct GPU buffer uploads
- Scientific precision
Rich Interactions
Built-in support for:
- Mouse wheel zoom (centered on cursor)
- Click and drag to pan
- Right-click drag for box zoom
- Touch gestures on mobile
Data Analysis
Integrated utilities for:
- Cycle detection in periodic data
- Peak finding (local maxima/minima)
- Statistical analysis
- Data downsampling (LTTB algorithm)
Quick Example
typescript
import { createChart } from 'scichart-engine'
const chart = createChart({
container: document.getElementById('chart'),
xAxis: { label: 'Time', auto: true },
yAxis: { label: 'Value', auto: true },
showControls: true,
})
// Generate 100k points
const n = 100000
const x = new Float32Array(n)
const y = new Float32Array(n)
for (let i = 0; i < n; i++) {
x[i] = i / 1000
y[i] = Math.sin(x[i]) + Math.random() * 0.1
}
chart.addSeries({
id: 'signal',
type: 'line',
data: { x, y },
style: { color: '#00f2ff' },
})Next Steps
- Installation - Add SciChart Engine to your project
- Quick Start - Create your first chart
- Core Concepts - Understand the architecture
- React Integration - Use SciChart with React
- Performance Optimization - Handle millions of points
- Responsive Design - Mobile-first visualization
- Scientific Analysis - Professional data tools